7 research outputs found

    Brain mechanisms of social signalling in live social interactions with autistic and neurotypical adults

    Get PDF
    The simple act of watching another person can change a person's behaviour in subtle but important ways; the individual being watched is now capable of signalling to the watcher, and may use this opportunity to communicate to the watcher. Recent data shows that people will spontaneously imitate more when being watched. Here, we examine the neural and cognitive mechanisms of being watched during spontaneous social imitation in autistic and neurotypical adults using fNIRS brain imaging. Participants (n = 44) took part in a block-moving task where they were instructed only to copy the block sequence which people normally do using a straight low action trajectory. Here, the demonstrator sometimes used an atypical 'high' action trajectory, giving participants the opportunity to spontaneously copy the high trajectory even if this slowed their performance. The confederate who demonstrated each block sequence could watch the participant's actions or close her eyes, giving a factorial design with factors of trajectory (high/low) and watched (watched/unwatched). Throughout the task, brain signals were captured from bilateral temporal/parietal/occipital cortex using fNIRS. We found that all participants performed higher actions when being watched by the confederate than when not being watched, with no differences between autistic and neurotypical participants. The unwatched conditions were associated with higher activity of the right inferior parietal lobule in all participants and also engagement of left STS only in autistic participants. These findings are consistent with the claim that people engage different neural mechanisms when watched and unwatched and that participants with autism may engage additional brain mechanisms to match neurotypical behaviour and compensate for social difficulties. However, further studies will be needed to replicate these results in a larger sample of participants

    Investigation of functional near-infrared spectroscopy signal quality and development of the hemodynamic phase correlation signal

    Get PDF
    SIGNIFICANCE: There is a longstanding recommendation within the field of fNIRS to use oxygenated ( HbO 2 ) and deoxygenated (HHb) hemoglobin when analyzing and interpreting results. Despite this, many fNIRS studies do focus on HbO 2 only. Previous work has shown that HbO 2 on its own is susceptible to systemic interference and results may mostly reflect that rather than functional activation. Studies using both HbO 2 and HHb to draw their conclusions do so with varying methods and can lead to discrepancies between studies. The combination of HbO 2 and HHb has been recommended as a method to utilize both signals in analysis. AIM: We present the development of the hemodynamic phase correlation (HPC) signal to combine HbO 2 and HHb as recommended to utilize both signals in the analysis. We use synthetic and experimental data to evaluate how the HPC and current signals used for fNIRS analysis compare. APPROACH: About 18 synthetic datasets were formed using resting-state fNIRS data acquired from 16 channels over the frontal lobe. To simulate fNIRS data for a block-design task, we superimposed a synthetic task-related hemodynamic response to the resting state data. This data was used to develop an HPC-general linear model (GLM) framework. Experiments were conducted to investigate the performance of each signal at different SNR and to investigate the effect of false positives on the data. Performance was based on each signal's mean T -value across channels. Experimental data recorded from 128 participants across 134 channels during a finger-tapping task were used to investigate the performance of multiple signals [ HbO 2 , HHb, HbT, HbD, correlation-based signal improvement (CBSI), and HPC] on real data. Signal performance was evaluated on its ability to localize activation to a specific region of interest. RESULTS: Results from varying the SNR show that the HPC signal has the highest performance for high SNRs. The CBSI performed the best for medium-low SNR. The next analysis evaluated how false positives affect the signals. The analyses evaluating the effect of false positives showed that the HPC and CBSI signals reflect the effect of false positives on HbO 2 and HHb. The analysis of real experimental data revealed that the HPC and HHb signals provide localization to the primary motor cortex with the highest accuracy. CONCLUSION: We developed a new hemodynamic signal (HPC) with the potential to overcome the current limitations of using HbO 2 and HHb separately. Our results suggest that the HPC signal provides comparable accuracy to HHb to localize functional activation while at the same time being more robust against false positives

    Decreased Exercise-Induced Changes in Prefrontal Cortex Hemodynamics Are Associated With Depressive Symptoms

    Get PDF
    People with a depressed mood tend to perform poorly on executive function tasks, which require much of the prefrontal cortex (PFC), an area of the brain which has also been shown to be hypo-active in this population. Recent research has suggested that these aspects of cognition might be improved through physical activity and cognitive training. However, whether the acute effects of exercise on PFC activation during executive function tasks vary with depressive symptoms remains unclear. To investigate these effects, 106 participants were given a cardiopulmonary exercise test (CPET) and were administered a set of executive function tests directly before and after the CPET assessment. The composite effects of exercise on the PFC (all experimental blocks) showed bilateral activation changes in dorsolateral (BA46/9) and ventrolateral (BA44/45) PFC, with the greatest changes occurring in rostral PFC (BA10). The effects observed in right ventrolateral PFC varied depending on level of depressive symptoms (13% variance explained); the changes in activation were less for higher levels. There was also a positive relationship between CPET scores (VO2peak) and right rostral PFC, in that greater activation changes in right BA10 were predictive of higher levels of aerobic fitness (9% variance explained). Since acute exercise ipsilaterally affected this PFC subregion and the inferior frontal gyrus during executive function tasks, this suggests physical activity might benefit the executive functions these subregions support. And because physical fitness and depressive symptoms explained some degree of cerebral upregulation to these subregions, physical activity might more specifically facilitate the engagement of executive functions that are typically associated with hypoactivation in depressed populations. Future research might investigate this possibility in clinical populations, particularly the neural effects of physical activity used in combination with mental health interventions

    Prefrontal cortical activation associated with prospective memory while walking around a real-world street environment

    Get PDF
    Rostral PFC (area 10) activation is common during prospective memory (PM) tasks. But it is not clear what mental processes these activations index. Three candidate explanations from cognitive neuroscience theory are: (i) monitoring of the environment; (ii) spontaneous intention retrieval; (iii) a combination of the two. These explanations make different predictions about the temporal and spatial patterns of activation that would be seen in rostral PFC in naturalistic settings. Accordingly, we plotted functional events in PFC using portable fNIRS while people were carrying out a PM task outside the lab and responding to cues when they were encountered, to decide between these explanations. Nineteen people were asked to walk around a street in London, U.K. and perform various tasks while also remembering to respond to prospective memory (PM) cues when they detected them. The prospective memory cues could be either social (involving greeting a person) or non-social (interacting with a parking meter) in nature. There were also a number of contrast conditions which allowed us to determine activation specifically related to the prospective memory components of the tasks. We found that maintaining both social and non-social intentions was associated with widespread activation within medial and right hemisphere rostral prefrontal cortex (BA 10), in agreement with numerous previous lab-based fMRI studies of prospective memory. In addition, increased activation was found within lateral prefrontal cortex (BA 45 and 46) when people were maintaining a social intention compared to a non-social one. The data were then subjected to a GLM-based method for automatic identification of functional events (AIDE), and the position of the participants at the time of the activation events were located on a map of the physical space. The results showed that the spatial and temporal distribution of these events was not random, but aggregated around areas in which the participants appeared to retrieve their future intentions (i.e., where they saw intentional cues), as well as where they executed them. Functional events were detected most frequently in BA 10 during the PM conditions compared to other regions and tasks. Mobile fNIRS can be used to measure higher cognitive functions of the prefrontal cortex in “real world” situations outside the laboratory in freely ambulant individuals. The addition of a “brain-first” approach to the data permits the experimenter to determine not only when haemodynamic changes occur, but also where the participant was when it happened. This can be extremely valuable when trying to link brain and cognition

    Brain mechanisms of social signalling in live social interactions with autistic and neurotypical adults

    No full text
    Abstract The simple act of watching another person can change a person’s behaviour in subtle but important ways; the individual being watched is now capable of signalling to the watcher, and may use this opportunity to communicate to the watcher. Recent data shows that people will spontaneously imitate more when being watched. Here, we examine the neural and cognitive mechanisms of being watched during spontaneous social imitation in autistic and neurotypical adults using fNIRS brain imaging. Participants (n = 44) took part in a block-moving task where they were instructed only to copy the block sequence which people normally do using a straight low action trajectory. Here, the demonstrator sometimes used an atypical ‘high’ action trajectory, giving participants the opportunity to spontaneously copy the high trajectory even if this slowed their performance. The confederate who demonstrated each block sequence could watch the participant’s actions or close her eyes, giving a factorial design with factors of trajectory (high/low) and watched (watched/unwatched). Throughout the task, brain signals were captured from bilateral temporal/parietal/occipital cortex using fNIRS. We found that all participants performed higher actions when being watched by the confederate than when not being watched, with no differences between autistic and neurotypical participants. The unwatched conditions were associated with higher activity of the right inferior parietal lobule in all participants and also engagement of left STS only in autistic participants. These findings are consistent with the claim that people engage different neural mechanisms when watched and unwatched and that participants with autism may engage additional brain mechanisms to match neurotypical behaviour and compensate for social difficulties. However, further studies will be needed to replicate these results in a larger sample of participants

    Management and Outcomes Following Surgery for Gastrointestinal Typhoid: An International, Prospective, Multicentre Cohort Study

    No full text
    Background: Gastrointestinal perforation is the most serious complication of typhoid fever, with a high disease burden in low-income countries. Reliable, prospective, contemporary surgical outcome data are scarce in these settings. This study aimed to investigate surgical outcomes following surgery for intestinal typhoid. Methods: Two multicentre, international prospective cohort studies of consecutive patients undergoing surgery for gastrointestinal typhoid perforation were conducted. Outcomes were measured at 30 days and included mortality, surgical site infection, organ space infection and reintervention rate. Multilevel logistic regression models were used to adjust for clinically plausible explanatory variables. Effect estimates are expressed as odds ratios (ORs) alongside their corresponding 95% confidence intervals. Results: A total of 88 patients across the GlobalSurg 1 and GlobalSurg 2 studies were included, from 11 countries. Children comprised 38.6% (34/88) of included patients. Most patients (87/88) had intestinal perforation. The 30-day mortality rate was 9.1% (8/88), which was higher in children (14.7 vs. 5.6%). Surgical site infection was common, at 67.0% (59/88). Organ site infection was common, with 10.2% of patients affected. An ASA grade of III and above was a strong predictor of 30-day post-operative mortality, at the univariable level and following adjustment for explanatory variables (OR 15.82, 95% CI 1.53–163.57, p = 0.021). Conclusions: With high mortality and complication rates, outcomes from surgery for intestinal typhoid remain poor. Future studies in this area should focus on sustainable interventions which can reduce perioperative morbidity. At a policy level, improving these outcomes will require both surgical and public health system advances

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    corecore